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LDM: Lineage-Aware Data Management in Multi-tier Storage Systems

Abstract
We design and develop LDM, a novel data management solution to cater the needs of applications exhibiting
the lineage property, i.e. in which the current writes are future reads. In such a class of applications, slow writes
significantly hurt the over-all performance of jobs, i.e. current writes determine the fate of next reads. We
believe that in a large scale shared production cluster, the issues associated due to data management can be
mitigated at a way higher layer in the hierarchy of the I/O path, even before requests to data access are made.
Contrary to the current solutions to data management which are mostly reactive and/or based on heuristics,
LDM is both deterministic and pro-active. We develop block-graphs, which enable LDM to capture the
complete time-based data-task dependency associations, therefore use it to perform life-cycle management
through tiering of data blocks. LDM amalgamates the information from the entire data center ecosystem, right
from the application code, to file system mappings, the compute and storage devices topology, etc. to make
oracle-like deterministic data management decisions. With trace-driven experiments, LDM is able to achieve
29–52% reduction in over-all data center workload execution time. Moreover, by deploying LDM with
extensive pre-processing creates efficient data consumption pipelines, which also reduces write and read
delays significantly.

Keywords
Lineage, Storage, Hadoop, Hard Disk Drives HDD, Solid State Drives SSD, Data management

Disciplines
Electrical and Computer Engineering

Comments
This is a post-peer-review, pre-copyedit version of a conference proceeding published as Mishra, Pratik and
Arun K. Somani. (2020) "LDM: Lineage-Aware Data Management in Multi-tier Storage Systems." In Arai K.,
Bhatia R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and
Systems, vol. 69. Springer, Cham. The final authenticated version is available online at DOI: 10.1007/
978-3-030-12388-8_48. Posted with permission.

This conference proceeding is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ece_conf/66

http://dx.doi.org/10.1007/978-3-030-12388-8_48
http://dx.doi.org/10.1007/978-3-030-12388-8_48
https://lib.dr.iastate.edu/ece_conf/66?utm_source=lib.dr.iastate.edu%2Fece_conf%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

LDM: Lineage-aware Data Management in
multi-tier storage systems

Pratik Mishra and Arun K. Somani

Department of Electrical and Computer Engineering,
Iowa State University, Ames IA 50014, USA,

mishrap@alumni.iastate.edu, arun@iastate.edu.

Abstract. We design and develop LDM, a novel data management so-
lution to cater the needs of applications exhibiting the lineage property,
i.e. in which the current writes are future reads. In such a class of appli-
cations, slow writes significantly hurt the over-all performance of jobs,
i.e. current writes determine the fate of next reads. We believe that in a
large scale shared production cluster, the issues associated due to data
management can be mitigated at a way higher layer in the hierarchy of
the I/O path, even before requests to data access are made. Contrary
to the current solutions to data management which are mostly reactive
and/or based on heuristics, LDM is both deterministic and pro-active.
We develop block-graphs, which enable LDM to capture the complete
time-based data-task dependency associations, therefore use it to per-
form life-cycle management through tiering of data blocks. LDM amalga-
mates the information from the entire data center ecosystem, right from
the application code, to file system mappings, the compute and storage
devices topology, etc. to make oracle-like deterministic data management
decisions. With trace-driven experiments, LDM is able to achieve 29%
to 52% reduction in over-all data center workload execution time. More-
over, by deploying LDM with extensive pre-processing creates efficient
data consumption pipelines, which also reduces write and read delays
significantly.

Keywords: lineage, storage, Hadoop, Hard Disk Drives HDD, Solid
State Drives SSD, data management.

1 Introduction

Extracting high performance from the storage system is the most important chal-
lenge in designing computing systems today. In large data intensive applications,
the movement of data from and to storage to compute engine may overshadow
the processing time for data [1] [2]. The storage devices attached directly (or
locally) to the compute nodes have limited capacity and are expensive due to
their proximity. Therefore, data is typically stored in storage hierarchy and are
required to be moved over the network to the compute nodes for processing. A
higher volume of data movement over I/O channels is resource (memory, net-
work, and storage), time and energy intensive. Overall, this scenario makes data
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storage and management in data centers a challenge as it has direct impact on
the efficiency of computing.

Data centers today cater to a wide diaspora of applications which process
multiple data sets for multiple jobs in a multi-user environment concurrently.
They also deploy storage systems organized in multiple heterogeneous tiers,
which is necessary to achieve cost-performance-capacity trade-off [3] [4] [5]. Ded-
icating physical resources for every application is not economically feasible. Re-
source sharing causes contention affecting the efficiency and performance [3] [6]
[7]. Despite advanced optimizations applied across the various layers along the
odyssey of data access, the data management layer remains volatile [8] [9]. Data
are scattered over multiple files located at multiple storage nodes1 and replicated
for performance, availability and reliability reasons.

An ideal storage system should deliver the same read (or write) access perfor-
mance to all applications. The read and write performance may differ due to their
perceived implications on the application performance. However, realizing same
read (or write) access performance for all applications can be difficult to achieve
because the data access time depends on a variety of factors including physical
device characteristics, data locations, current utilization of devices, available I/O
bandwidth, location of storage device, network topology, and delays, etc.

The current data management techniques fail to capture the syntax and
semantics of jobs and the associations of data in various stages of jobs. Moreover,
the goals of current efforts have been to make read operations faster as they
are believed to be the biggest bottleneck. However, inconsiderate placement of
intermediate results (writes) for reuse may affect the read performance adversely.
Under this scenario, the gains derived by deploying multiple tiers in storage can
be nullified easily by improper replica allocations to tiers, handling of memory
resources, and avoidable data movement [4] [10] [11].

Here, we address the issue of how to deliver ideal system performance for all
read and write accesses.

We understand that it can be and is hard to manage data storage and move-
ment for any arbitrary set of applications contributing to data center workloads.
Therefore, to begin with, we limit our scope to a set of applications that de-
pict the lineage property, where intermediate data during computation must
be written and read back later on. Such a scenario occurs commonly in data
centers. For example, in one application scenario [11], data may be extracted
using MapReduce [12] which are queried using Pig [13], then machine learning
algorithms are used on the queried results [11], and are finally combined with
other similar results to produce the final answers [11] [14]. The issues associated
with data management gets amplified for applications with such chained jobs,
which exhibit lineage. Therefore, dealing with large amounts of current “writes”,
which are future “reads” is equally important to achieve good performance [11]
[15]. Multi-tier storage offers multiple dimensions, such as device type, network

1 Storage refers to the overall data plane, whereas a storage node refers to a single
physical device.
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connectivity, and replication management, allowing exploration of data access
solution space differently.

1.1 Motivation

The following trends are clear:
1. The size of data is ever increasing, and more and more data are being stored
on remote storage.
2. The complexity and structure of data being processed for analytics varies
dramatically.
3. Enterprise data centers includes thousands of processing (and heterogeneous)
and storage nodes.
4. Data is organized in multiple heterogeneous tiers with a wide variety of stor-
age devices in both local and remote storage to extract best performance.
5. Increasing amount of data are being used by multiple applications and/or
series of jobs of the same application chained together.
6. Chained MapReduce ETL pipelines and Oozie workflows are most popular
lineage based applications.
7. Current writes are future reads. Thus, writes dominate the over-all perfor-
mance of these applications. Therefore, more emphasis needs to be given to
initial data placement and replica management.
8. Data management needs to be both ecosystem as well as network-storage
architecture-aware.

We develop and design a novel framework, called LDM, to address the chal-
lenges in lineage-aware data management to effectively utilize multi-tier storage
hierarchy. LDM captures the inherent lineage information (using block-graphs)
and reduce the data movement via network by placing them appropriately to en-
able maximal processing nearer to the storage locations as well as in appropriate
storage tiers. Moreover, LDM utilizes all tiers2 of storage to reduce data access
delays in conjunction with workload aware tiering3 by orchestrating multiple
data management features. These include data placement, data replication man-
agement and data migration. In this paper, we limit our scope to data placement
and data replication management, and in future would develop data migration
capabilities. We believe LDM will have a huge impact on the performance and
resource management of data processing platforms.

The paper is organized as follows. First, we discuss lineage, and the problems
associated due to over-looking of these class of applications in Section 1. The
related research is described in Section 2. In Section 3, we discuss the design of
our data management framework, LDM, and the development of Block-graphs
required to capture data dependability in workflows. This is followed by designing
techniques for life-cycle management of data blocks utilizing various tiers of

2 Storage media across all nodes with similar I/O characteristics form a tier.
3 Tiering refers to orchestrating data between heterogeneous tiers of storage by lever-

aging individual strengths of each to maintain balance between Cost, Performance
and Capacity.
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storage. We evaluate the performance of LDM for two types of Data Center
lineage-based applications along-with discussions of the results in Section 4. We
conclude the paper in Section 5 with a discussion on future work.

2 Related Work

The concepts of lineage have been extensively used in databases mostly for recov-
ery, space-optimizations, uncertainty, dependency and fault-tolerance, [16] [17]
[18] [19] [20] [21] [22] [23] [24] [25] [26] [27]. There have been efforts [11][10] to
understand lineage for in-memory computation for improving job recovery time
in-case of fail-overs and performance in Data Centers with nodes having large
memory. Zaharia et. al [10] forms distributed data-sets for in-memory computa-
tions (production and computation in-memory), which inherently improves per-
formance. Tachyon[11] proposes an in-memory fault tolerant mechanism which
leverages lineage to recover lost outputs by re-executing the steps which formed
the data-sets. In-memory computations and storing of results in memory are
infeasible for Big Data workloads as the working sets are huge to fit in RAM,
along-with the time-varying nature of applications for production and consump-
tion of data blocks [28]. Issues such as ensuring reliability and cost-effectiveness
are other major challenges in such frameworks. Therefore, cost simulations in
FBMsgs [28] that adding small SCM tier and efficient orchestrating data between
tiers can lead to enhanced performance than equivalent spending on RAM or
disks. Multi-tier storage offers multiple dimensions, such as device type, network
connectivity, and replication management, which allows to explore to explore the
issues associated with data access differently.

Most studies have focused on studying data center operations to consoli-
date the computing needs and organize and optimize computing for multiple
applications. Computing resources are believed to be abundant, but without ap-
propriate attention, they are mostly waiting for data and wasting cycles [3] [8]
[9] [29] [14] [30]. Moreover, for lineage based applications, the impact is more
severe due to data-dependency between tasks. Keeping all the data in memory
(as done in Spark) may not be a wise choice either. We believe that the focus
needs to shift from computing to data. What makes this shift relevant is the
availability of oracle-like deterministic workload and data center storage topol-
ogy aware data management. Datum access from storage and copying in memory
is expensive. Therefore, we believe that studying data utilization patterns and
developing strategies to optimize computing paths are the greatest needs at the
current time [31].

Triple-H [32] designs a heterogeneous storage engine for HPC including RAM-
disks, SSDs and HDDs, and Lustre FS to benefit HDFS. The data placement
engine in [32] deals with tri-replication of blocks to ensure fault tolerance and
the decisions of placement of replicas in a tier is based on storage space available
with a usage-priority based tier migration model. hatS [33] proposes a model with
an intent to remove performance bottlenecks by placing every block belonging
to file in all tiers of storage. Multiple solutions [34] [35] [36] [33] [37] [38] [39]
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[40] [41] [15] [4] [32] [35] have been proposed in literature to exploit multi-tier
storage, but none addresses the issues associated with lineage or chained jobs.
The storage layer is agnostic to the semantics of tasks on data and its execution
characteristics.

To address these challenges, LDM utilizes the inherent lineage information
(data-task associations) coupled with multi-tier storage for improving over-all
application execution time. In the next section, we discuss the working of LDM
and how it manages data-dependency (or lineage).

3 LDM

In large scale distributed systems, data management plays a vital role in pro-
cessing and storing primary and backups of data across storage devices. Despite
advanced optimizations being applied across various layers along the odyssey of
data access, the data management layer still remains volatile [9] [8]. Goals of
current efforts are to make read operations faster as they are believed as the
biggest bottleneck. However, inconsiderate placement of intermediate results for
reuse may affect performance adversely. This problem gets amplified for chained
applications which exhibit lineage. It is now becoming clearer that dealing with
large amounts of current “writes”, which are future “reads” is equally important
to achieve good performance. Therefore, in such data processing pipelines, its
imperative to capture lineage or relationship across tasks and their dependency
with data, i.e. data-task associations.

Fig. 1: Components of LDM.

In LDM, we provide a uniform execution environment across the storage
server and compute server. We address the specific needs of a cluster of applica-
tions with data-dependencies. LDM resides in the Master (or Head) node of clus-
ters where jobs are submitted by applications and data management decisions
are made. Consider Figure 1, LDM includes the following three components.
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1) Capturing Lineage Information. This component is accomplished by a
set of APIs that generate and analyze the metadata associated with application
code and extract semantic knowledge of the computational workflow and logic
from the code to build task and block graphs (described later).

2) Matching Storage capabilities. This component uses the information
about the storage devices (type, capacity, performance, etc.) as well as location
(local or remote) to categorize and classify them. These APIs reside on DataN-
odes and storage servers and transmit storage devices information as part of
the status updates regularly to the NameNode for its own use in making data
location decisions.

3) Dependency Mitigation. This component use the above two modules as-
sisted by the information stored in the Distributed file system to make data
management decision and policies. These include APIs for initial Data Place-
ment and Replica Management to decide where to place the date and its copies
in terms of tier and device. Data Migration API will use the lineage information
to evict already placed blocks as well as determines the utility of the blocks for
both capacity and efficient utilization of storage tiers.

Before describing these components in detail, we first describe Hadoop and
MapReduce ecosystem in brief as this will be used as a running example to
demonstrate the need and our approach to solution.

Hadoop Ecosystem and MapReduce
Hadoop and its data processing framework - MapReduce is the de-facto large
data processing framework for Big Data [13]. Hadoop is a multi-tasking system
which can process multiple data sets for multiple jobs in a multi-user environ-
ment across multiple machines at the same time [42] [43]. Each MapReduce
job consists of multiple processes submitting I/Os concurrently for Map, Shuffle
and Reduce stages, each having skewed I/O requirements [44] [45] [46]. Hadoop
Distributed File System (HDFS) uses a block-structured file system to deliver
reliable storage [13] [43].YARN (Yet Another Resource Negotiator) is used for
per-application based resource negotiating agent and is a centralized platform to
ensure consistency and data manageability. YARN has enabled Hadoop with the
flexibility to encompass multiple data processing engines such as Spark, Storm,
etc. to process and manage the data concurrently. It has also enabled Hadoop
with multi-tenant processing capabilities such as different applications/ process-
ing engines working concurrently by using application based containers.

HDFS splits the files into fixed size file system blocks (64/128 MB), known as
chunks, which is typically tri-replicated for achieving the fault-tolerance, avail-
ability and performance parameters. HDFS follows a leader-follower architecture,
with a NameNode, which manages storage and several DataNodes hosting the
data [43] [13]. The NameNode manages the file system namespace and associated
metadata (file-to-chunk maps) as well as contracts the access to files by clients
(once brokered, the clients interact directly with DataNodes). The NameNode
operates entirely in memory, persisting its state to disk. All such information
are persisted in two major files in the NameNode: 1) fsimage, which stores the
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complete snapshot of the file system metadata at a particular instant; and, 2)
edit log for the incremental changes to the file system namespace [43]. Thus, the
NameNode is central to data management and can be exploited in developing
necessary policies.

3.1 LDM framework

The key idea behind LDM is to build a data management system which has
an oracle-like capability to know the future usage of data and therefore take
deterministic actions based on its knowledge. The information of the data pro-
cessing framework and ecosystem is already present and needs to be properly
harnessed. All such information and statistics are already being produced or con-
sumed by different components of the system. Therefore, this knowledge when
amalgamated with our tier-and-network aware storage policies should yield bet-
ter performance for lineage class of applications.

(a) Knowledge Mining (b) Pipelining of jobs

Fig. 2: (a) LDM Knowledge mining to aid data management policies; (b) Job
pipelining and data-task associations.

In Hadoop like environments, LDM would work with YARN resource man-
ager and HDFS data management to transform information into intelligence
and use the intelligence acquired to execute policies for to mitigate the impact
of data dependency for lineage class of applications. Consider Figure 2a, which
briefly describe the information produced by different system components. LDM
can use this information to create data management policies to achieve better
performance for applications exhibiting lineage.

In the following three sections, we describe the details of the working com-
ponents of LDM.

Capturing Lineage Information
It is imperative to understand and extract information about the workflow

and the dependencies within and among the applications. The semantics and
syntax of every application can be extracted by mining the code and amalga-
mated with the data processing steps to understand the ecosystem and achieve
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efficiency in the computation. We achieve this functionality by developing a set
of APIs. The Client API will understand the computation flow and build task
graphs based by mining the application code. A task graph will be represented
by a DAG (directed acyclic graph) representing the tasks as nodes and asso-
ciated dependencies between tasks as directed edges.A task graph alone does
not exhibit the location based data dependency. LDM, therefore, will use the
file-system information about the block to device mappings (for example: fsim-
age, and editlog for HDFS) to associate blocks of data with tasks (using task
blocks) to develop Block graphs. Block graphs capture all the data block-task
associations, which would deterministically capture data lineage across tasks.
This knowledge would aid in mitigating the impact of delays associated to writ-
ing and then subsequently reading intermediate results. The interaction between
the Client API for task graphs and filesystem namespace is achieved by the Data
block-Task Associativity API working on the NameNode.

Understanding Ecosystem: Job Pipelines

Chained Jobs are a popular class of applications that are executed on clusters.
Essentially, the jobs are pipelined and the output of a job forms the input (or
a part of the input) of the next job. Such jobs are common in several business
and scientific applications. For example, Job pipelines are produced by Hadoop
workflow managers like Oozie to perform ETL (Extract, Transform and Load)
applications [11] [34]. Data is extracted using MapReduce, then queried using
Pig, followed by machine learning algorithms delivering the query results, that
are combined with other results [11]. Clearly, there is data-dependency between
jobs.
A typical data center workload scenario consists of multiple applications having

highly skewed I/O characteristics that exists concurrently as concurrently as
shown in Figure 2b. The following hierarchy commonly is maintained for data
processing.

1. Application Layer: Data Centers spawn multiple instances of many applica-
tions using compute and storage servers. As depicted in Figure 2b, n applications
A = {A1, A2, . . . , An} are waiting to be executed on the cluster at some time
instance ‘t’. These applications vary in nature (i.e. analyzing customer behavior,
weather patterns, genomics, financial data, etc.) and are independent.

2. Job Layer: An application Ai, is a conglomeration of several jobs denoted
by set J = {J1, . . . , Jk} with data-dependency. In Figure 3, application A1 is
shown in detail as consisting of jobs J1 to Jk.

3. Task Layer: Task is the smallest granularity of computation which access
and process data. Each job Ji in an application is further sub-divided into a
set of tasks T = {T1, . . . , Tp}. In a typical scenario, multiples such tasks are
run concurrently. Depending on the application, the intermediate results may be
required immediately as well as later on.

Data Layer: A task consumes or produces data which is organized across mul-
tiple heterogeneous tiers of storage. Due to storage virtualizations, multiple pro-
cesses contend for the same physical resource for read and write access that
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may be stored in local (DAS) or in remote storage (NAS/SAN). I/O across the
network exposes data transfer to network congestion, delay and losses.
Task graphs

A task graph is a sequence of all the tasks associated with each other and is
represented by a DAG (directed acyclic graph). Task graphs can be formed by
mining of the application code coupled with logic extraction of the ecosystem.
Based on the framework like MapReduce, Spark or Pig, and the logical data flow,
the NameNode can create the task graph when an application is submitted. The
task graph provides an overview of job and dependencies among tasks currently
running on the system as well as maps the application requirements. Figure 3b
shows the task graph for a set of inter-linked or chained jobs.

(a) Map Reduce:
An example

(b) Task graphs-workflow (c) Block graphs: Data-
task associations

Fig. 3: (a) MapReduce Job: An example of DAGs of tasks (direction of arrows
represents event time). Dataflow representations (b) Task graphs- workflow; (c)
Block graphs: Data-task associations.

Block graphs: Data-Task associations
Despite capturing the workflow, a task graph fails to understand the lineage

of data and associativity of different tasks and blocks of data as conjoint pairs.
This is extremely fatal, as a data block might be consumed/produced by multi-
ple tasks and affect the over-all performance of the application. There is a clear
need to extract these relationships and utility of each data block to develop
proper data management policies. LDM uses the file-system information about
the blocks to device mappings (similar to fsimage and editlog for HDFS) stored
in the NameNode to associate blocks with tasks to construct a Block graph.
In LDM, the Data-Task Associativity API working on the NameNode captures
these interactions. The knowledge of these interactions aid in mitigating the im-
pact of delays associated to writing and then subsequently reading intermediate
results.

Block graphs are essentially representation of data-task associations, where
the blocks of data (as a single entity or replicas) form the vertices and the
tasks producing/consuming them as edges as shown in Figure 3c. The utility
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and reusability of blocks can be determined using this representation. During
run-time, only initial input data (initial filename) is available, the initial vertices
(block-IDs) are formed using the filesystem namespace and the logical tasks. The
graph for later stage is constructed assuming every task produces a data block
(not necessarily a full data chunk). Application code mining can determine tasks
consuming/producing a data block, thus providing a complete overview of data
usage.
An Example: A MapReduce job- DAG of tasks and Block Usage

We use a MapReduce application source code analysis to describe how the
Client API can extract the entire computation logic (task graphs) and the Data-
Task Association API integrates the filesystem namespace to build block graphs.
Figure 3a depicts a simple MapReduce function to count the number of instances
of unique words in a file of multiple TBs in size. The code is broken into simple
Unix commands, such as, cat, grep, and wc -l (subtasks), and these logical par-
titions may be executed in different machines.
In the Map phase, 128 MB data chunks are read from storage nodes and are

processed to form collection of < key, value > pairs. The Shuffle stage parti-
tions the output of Maps based on “keys” to be processed and transfers data
to reducers by the Reduce tasks. The DAG structure and data needs data for
computation to be persisted in storage. Figure 3a clearly depicts the lineage, task
graph and how a block graph can be generated from it.

3.2 Matching Storage capabilities

Hadoop like large distributed systems gained popularity due to their design
of bringing computation closer to data which were primarily for DAS setups
of acomprising large number of inexpensive machines. However, as we move
forward and data being scattered, it is necessary to deploy remote storage servers
(NAS/SAN) across thousands and millions of storage devices with varied I/O
and physical characteristic. The storage hierarchy may include Main Memory
(RAM), Solid State Drives SSDs, and Hard Disk Drives (HDDs), etc. Storage
media across all nodes with similar I/O characteristics form a tier [4] [11] [34].
The question of when, where and how-to organize data over multiple tiers in the
hierarchy becomes important to reap the maximum benefits.

Software defined storage (SDS) is part of the solution to deliver storage ser-
vices. Automated tiering is one of the major focus to deliver SDS [47]. Recall
that Tiering refers to orchestrating data between heterogeneous tiers of storage
by leveraging individual strengths of each to maintain balance between Cost,
Performance and Capacity. Our goal in LDM is to use the information about
the storage devices (type, capacity, performance, etc.) as well as location (lo-
cal/remote) to categorize and classify them. The next step is to implement ap-
propriate APIs to reside both at the DataNodes and storage servers to send their
usage status regularly to the NameNode. The NameNode will use the informa-
tion in making data location decisions.
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Need for multiple tiers and automated tiering

Disk-based storage devices are the backbone of data centre storage. HDDs
provide the perfect blend of cost and capacity to satisfy the volume requirement
of Big Data. But due to their physical limitations, non-volatile devices, also
known as storage class memories (SCMs), such as SSDs are also being used in
large data centres. SCMs offer superior access time due to non-moving parts.
SCMs used with legacy disk based interface such as SATA/SAS were incapable
of harnessing the throughput and inherent parallelism. However, recent advances
such as faster PCIe bus technology (also known as NVMe Express) [48] [49], PCIe
switches, Linux block layer redesign, etc. are enabling SCMs to provide higher
performance.

Despite superior random performance of SCMs (or SSDs) over HDDs, their
higher costs, need for write amplification, and lower lifespan remain concerns for
long-term economically feasibility. A hybrid approach with heterogeneous tiers of
storage such as those having HDDs and SCMs coupled with workload aware tier-
ing to balance cost, performance and capacity have become increasingly popular
[50].

Existing definitions of tiers considers only device characteristics. They do not
take into consideration proximity to compute resources and effects of network
transfers. Data in a local HDD might be more valuable than in a SSD in a
remote location. However, it is not possible to store all data in local storage due
to the working set sizes, large spectrum of concurrent applications running on a
node and their varying I/O characteristics. Remote storage offers an alternative
to satisfy the volume requirement. However, performing I/O across the network
makes data transfer prone to network issues like congestion, delay and losses.
Such data movements are thus expensive and affect application performance.
Therefore, resource manager typically monitors network congestions and tries to
utilize replication to maintain performance.

An intelligent and deterministic data management technique would orches-
trate the application needs apriori to minimize data movements leveraging ecosys-
tem tools (replication, tiers, etc.) efficiently while ensuring performance. An
ideal data management scheme should envision local-remote storage conjoint-
pairs analogous to in a similar manner as the cache-main memory model, but
with a different interface.

Replication

The data chunks are usually replicated and stored in different nodes across
the storage system. The purpose of replication is tri-fold, i.e. achieving fault-
tolerance, availability and performance (consider Figure 4). The current schemes
[42] [32] [51] [50] [33] of replica management leverage the number of copies or
replicas and their locations. [32] designs a heterogeneous storage engine for HPC
including RAMdisks, SSDs and HDDs, and Lustre FS to benefit HDFS. The
data placement engine in [32] deals with tri-replication of blocks to ensure fault
tolerance and the decisions of placement of replicas in a tier is based on storage
space available with a usage-priority based tier migration model. [33] proposes a
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Fig. 4: Advantages of replication.

model with an intent to remove performance bottlenecks by placing every block
belonging to file in all tiers of storage.

An interesting approach to replica management would be to i) take into con-
sideration the tier-device characteristics and device utilization and ii) move repli-
cas dynamically based on time-varying application I/O requirement. This adds
another dimension which would be highly beneficial to all applications, espe-
cially, those which have data-dependency, i.e. lineage based applications. Cur-
rently, tiering is mostly concerned with defining hotness or randomness and not
on replica management as a tool for multi-tier environments. Well-managed mul-
tiple replicas of data will lead to better performance.

Storage Device Classification and Categorization

The classification and categorization of storage devices refers to associating
them with a performance-score or rating, PR. PR includes performance gov-
erning parameters like speed, remaining capacity, number of channels for I/O
access (i.e., one for SATA/SAS HDD or SSDs, 8/16 for NVMe SSDs), current
utilization, location in storage architecture (DAS or NAS/SAN) and cost/GB.
The key goal behind PR is to overcome the deficiencies of current practices and
integrate them into the data management policies and tools.

PR is a dynamic parameter for each device as the factor defining them vary
over time. The appropriate APIs on DataNodes and the storage servers can
collect all such relevant parameters for the devices attached to them, and peri-
odically transmit them to the NameNode via status updates. The Storage Clas-
sification API residing on the NameNode utilizes all these parameters to profile
every storage device at the run time. The value of PR for a storage device and
the location of the client requesting write/read for data placement allows a cor-
rect decision to be made. For example, the value of an HDD attached locally can
be higher than a SSD in a remote location (location w.r.t. computation locality),
or vice-versa. Such decisions are complex and tiering decisions cannot be made
solely on device characteristics. Therefore, LDM provides a dynamic and unified
method with the use of performance ratings to profile the available resources to
aid data management decisions.
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3.3 Dependency Mitigation

Our goal is to focus on mitigating the impact of associated delays due to incor-
rect management of data dependency for applications exhibiting lineage. The
knowledge gained by using the task and block graphs and the awareness of the
storage systems capabilities allow us to develop sound data management poli-
cies. Primarily, we will perform Initial Data Placement, Replication Placement,
and Data Migration tasks to decide the storage device(s) to place the data and
if, when, and where to move data blocks dynamically.

The Dependency Mitigation component uses the lineage information and the
PR values to deliver data placement and replica placement decisions. It includes
two APIs, one for initial Data Placement and one for Replica Placement. Data
Migration API uses the lineage information to evict already placed blocks as
well as determines the utility of the blocks for both capacity and efficient uti-
lization of storage tiers. Please note that LDM is concerned only with the data
management of intermediate results. For some tasks, initial data can be treated
as intermediate results if the data is being migrated for the computation.

HDFS Data Placement: An Example

Currently in HDFS, during the write phase, as soon as a worker writes 80%
of a data chunk (64 MB) in memory, it tries to persist the data chunk in stor-
age [43]. The worker contacts the NameNode through RPC calls for a list of
DataNodes which can host the chunks and its copies. The NameNode follows
rack-aware fault-tolerant algorithms to protect against network failures for the
placement of data, generates a list of available DataNodes to the client. The
client directly communicates with all DataNodes and pipelines the data chunks
one-by-one in 4KB data packets following an ACK based protocol received [43].
This pipelining slows the write process, as to maintain fault tolerance and con-
sistency the slowest DataNode governs the over-all performance. The current
schemes do not leverage the tiers of storage available for placement of initial
data and its replicas. We propose to use a different strategy in LDM as outlined
below.

Initial Data Placement

With the knowledge of all tiers in storage media (PR), the current write as
well as retrieval needs, and the knowledge of data-task associations of all the
tasks currently running or to be spawned in near futures with the help of the
block graphs, LDM is better equipped to dictate policies for placing the initial
data across the storage to benefit future reads. When a worker contacts the
NameNode for writing a data chunk B, the Initial Data Placement API residing
on the NameNode uses the block graphs to compute the data-dependency factor,
known as “Lineage Quotient LQB” for the data block B. LQB determines the
utility value of block B and based on it, a storage media is selected where the data
should be initially placed. To unify the placement algorithm, a global storage
table (GST) for placement is maintained. GST suggests the storage medias
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(based on recently computed PRs) that are suitable for a range of LQB as
described below.

Algorithm 1 LDM Initial Data Placement

1: for every application a ∈ A do
2: Compute block-graphs BGa ∈ BG
3: end for
4: for every block B ∈ BG do
5: Compute LQB using reusability R
6: Refer global storage table GST to compute refactored PRs−
7: (based on locality L of task producing block B)
8: Select storage media m based on LQB and refactored PR
9: Send location of storage media m to Worker

10: Pipeline replicas as per Algorithm 2.
11: end for

Algorithm 1 describes the working of the Data Placement API. LQB is de-
termined by investigating the reusability R, i.e. the outdegree of block B from
the block graph. Lineage factor LQB increases with the number of tasks using
it next, i.e. (reusability R). The closer the data is placed to the task generat-
ing it, lesser is the network footprint usage. Therefore, locality L plays a vital
role in determining the appropriate rack and storage media in it for the initial
placement of data. For all the storage devices, the performance rating PR is
refactored based on network distance from locality L, higher the distance lower
the performance rating. For example, for a task generating block B, a HDD with
lower network distance might have a higher refactored performance rating than
a SSD which is far away. Based on the global table GST, storage media and its
location is sent to the worker to write the data.

Replica Placement
Once the first data block (4KB) of the 64MB data chunk is written to the

storage media, the replicas needs to be placed in the pipeline. The principle
is similar to the current fault tolerance mechanisms of the Hadoop ecosystem.
The placement of replicas is managed by the Replica Management API residing
in the NameNode. The current schemes, take into consideration fault tolerance
for placement of replicas to guard against network failures. To mitigate depen-
dencies, the write throughput of all the pipelined replicas is important which
is governed by network bandwidth and storage media. LDM manages this as
follows.

Algorithm 2 describes the working of the Replica Placement API for pipelin-
ing replicas. Similar to initial data placement the Lineage Quotient for (two
additional copies for tri-replication) blocks LQ′

B and LQ′′
B , respectively, is cal-

culated with additional parameters. The reusability factor R for every replica
is reduced by 1 (with minimum 0) from the previous replica value. Here, the
locality L of the previous replica is used only to determine a separate rack for
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Algorithm 2 LDM Replica Placement

1: for every replica r of block B do
2: Compute Reusability factor of replica r
3: Rr = (R− 1), Rr ≥ 0
4: Refer global storage table GST to compute refactored PRs
5: (based on locality L of previous replica and storage rack-aware policy)
6: Select storage media m based on LQr and refactored PR
7: Send location of storage media m to Worker for pipelining replica
8: R = Rr, previous replicas reusability factor.
9: end for

storage than the initial block to respect fault tolerance. The assumption here is
to use replicas for satisfying the performance for parallel tasks trying to consume
the same data set as well as effective capacity utilization of tiers. Therefore, the
probability of all replicas occupying the fastest tier is reduced, unless it is a
highly dependent block. Based on the Lineage factor of the replicas, the loca-
tions are determined in a similar manner to the placement of initial data. The
worker is informed of the storage media and the locations for both the blocks
and it follows the data write pipeline ACK protocol.

4 Experiments and Performance Evaluation

Through trace-driven and log-based simulations, we evaluate the performance of
LDM and compare it with the current implementation of YARN (and HDFS)
using our in-house developed system simulators. We discuss the testbed setup
followed by the performance evaluation in the section below.

4.1 Testbed setup

Our experimental testbed consist of our Hadoop cluster and trace (and log)
collection remote nodes. The Hadoop cluster topology consists of 1 NameNode,
1 Secondary NameNode and 8 DataNodes. Each node has 16 cores (Two 2.0
GHz 8-Core Intel E5 2650), 128 GB of memory, GigE and QDR (40Gbit) Infini-
band interconnects, and 2.5 TB Hitachi HDDs. We use CDH v5.11.1 (Cloudera
Hadoop) with the latest implementation of YARN and HDFS. The heteroge-
neous capability is achieved by using specifications similar to 256 GB Samsung
SSD 840 pro with the distribution of capacity in the ratio of 1:8 as compared to
HDDs attached locally to the nodes.

We select industry and academia wide used Hadoop benchmarks considering
a wide diaspora of I/O workload characteristics, as specified in HiBench [52]
& TPC Express Benchmark (TPCx-HS)- Hadoop suite [53]. These benchmarks
have been designed to recreate enterprise Big Data Hadoop cloud environments,
stressing the hardware and software resources (storage, network and compute) as
observed in production environment. We use benchmarks to form long-running
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lineage applications which have inter and intra job data dependency. We also
run non-lineage concurrent applications to emulate a realistic shared big data
infrastructure. We discuss the details of the applications in the next section.

The NameNode and DataNode statistics, job (and container) running history
along with File System details (block locations, chunk-to-device mappings) are
collected in remote log collection nodes. We collect traces from the block layer of
a disk of the DataNodes in such a stage where the applications have submitted
block I/O structures to the block device using the blktrace [54] linux utility.
The traces include details such as process id (pid), CPU core submitting I/O,
logical block address (LBA), size (no. of 512 byte disk blocks), data direction
(read/write) information for each I/O request4. In the next section, we discuss
briefly an example of lineage based application, which we use for our experiments
followed by the performance evaluation of LDM.

Lineage Based Application: An example

We use chained MapReduce inter-related jobs to emulate applications which
exhibit lineage. Figure 5 shows a Lineage application using three MapReduce
benchmarks (TeraGen, TeraSort and TeraValidate) which run along with long
running non-lineage concurrent applications to form a shared Data Center work-
load. TeraGen, TeraSort and TeraValidate form logical data-dependent steps to
produce the final result.

TeraGen
(TG)

Map Tasks

Dependent 
HDFS blocks

Map Tasks

TeraSort
(TS)

Shuffle Tasks

Reduce Tasks

Dependent 
HDFS blocks

TS (reads)

TS (writes)

Map Tasks

Final Output

TV (Total)

TeraValidate
(TV)

Shuffle Tasks

Reduce Tasks

TS (Total)

TG (Total)

Workload 2

Workload 1

WSD1

WMedian

WMean

WSD2

WSD3

RTW

RW

Other Concurrent 
Applications

Non-Dependent 
HDFS blocks

Non-Dependent 
HDFS blocks

Fig. 5: Data Center Workload Emulation.

TeraGen is a data generating job, which produces 1 TB of random data.
TeraGen consists of only Map tasks with no reduces. We use TeraGen as a phase
which generates data and persTieists it in HDFS, which in-turn is consumed by
the next phase, i.e. TeraSort. TeraSort consumes the data generated by TeraGen

4 Please note, we collected (stored) the traces remotely on a different machine through
the network and not stored in the same local HDFS disk for maintaining the purity
of the traces & minimize the effects of the SCSI bus [54–56].
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to sort the data. TeraSort consists of Map phase to read the data, there is one
map task per HDFS block. The intermediate data is shuffled and partitioned
according to the number of reducers, which are sorted and persisted to HDFS
in the reduce phase. The result of TeraSort is used by TeraValidate to validate
the output of TeraSort. There are other applications which run concurrently.
Consider Table 1, we have divided the jobs and applications running during
TeraGen, TeraSort and TeraValidate into Phase 1, 2, and 3 respectively. We
execute combination of these phases to form two types of workloads which exhibit
lineage, the details are described as follows.

Table 1: Experimental Data Center Workloads.
Lineage Application for
Workload 1 “LDMW1”: (TeraSort (TS)→ TeraValidate (TV )).
Workload 2 “LDMW2”: (TeraGen (TG)→ TeraSort (TS)→ TeraValidate (TV )).

Phase Workload 1 Workload 2

Phase 1 Does Not Exist TeraGen(TG), WSD1,
WMedian, WMean.

Phase 2 WSD1, TeraSort(TS), WSD2,
WMean, WSD3.

WSD1, TeraSort(TS), WSD2,
WMean, WSD3.

Phase 3 WSD2, TeraValidate(TV ),
RTW , RW .

WSD2, TeraValidate(TV ),
RTW , RW .

where, Wx denotes instance x of Workload W .

Abbreviations of Workloads:

WSD: Word Standard Deviation;

WMean: Word Mean;

WMedian: Word Median;

RTW: Random Text Writer;

RW: Random Writer.

Workload 1: For Workload 1, the lineage application LDMW1 is a scenario
where the data is already residing in HDFS and stored in HDDs, i.e. we assume
data generating phase, Phase 1 Does Not Exists. The initial data is retrieved from
HDDs and TeraSort (TS), sorts the data in Phase 2 and further the output
is required by TeraValidate (TV ) in Phase 3 for producing the final result.
Therefore, the lineage application LDMW1 forms a chain TeraSort (TS) →
TeraValidate (TV ). These applications are batch processing where large chunks
of data is already present in storage and at run-time it needs to be acquired.
There are a many applications, where data is generated or received on the fly
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(eg: stream applications, joins, etc) and used subsequently for further processing,
which are discussed in Workload 2.

Workload 2: For Workload 2, the lineage application LDMW2 are such
examples of chained jobs, where data is generated on the fly and then subsequent
results are produced and consumed. Therefore, the lineage application LDMW2

forms a chain TeraGen (TG) → TeraSort (TS) → TeraValidate (TV ).
As can be seen in Figure 5, for every phase we have marked the Dependent

and Non-Dependent HDFS blocks. Dependent HDFS blocks are those blocks
which are consumed by the set of tasks in future. While Non-Dependent HDFS
blocks are those blocks which are either never consumed or those replicas of De-
pendent blocks which provide fault-tolerance. The discovery of data dependence
and mitigating the impact of this dependency is critical for application perfor-
mance. With trace-driven experiments and performance evaluation of results in
the next section, for both data-center workload scenarios, i.e. Workload 1 and
Workload 2, we compare the data-dependency management capability of LDM
with the latest implementation of HDFS.

4.2 Performance Evaluation

We compare the effectiveness of our dependency mitigation technique scheme,
LDM, with the latest implementation of HDFS used deployments for both data-
center workload scenarios. For our experiments, we use the default parameters,
which is based on the storage devices and driver specifications. Based on trace-
driven simulations, in the next section we analyze the performance of both the
schemes, i.e. HDFS and LDM for Data Center workloads 1 and 2.

Total Workload Completion Time
Figure 6a represents the total time taken (y-axis) for finishing the data-center

workloads. This represents the time to complete all applications in the workload,
i.e. lineage as well as other non-lineage applications. It is observed that LDM
reduces the time taken to finish the workloads significantly, thereby bridging the
deficiencies of HDFS to manage data dependencies. The performance gain (in
terms of completion time) is 29% and 52% for workloads 1 and 2, respectively.
In LDM, the dependent blocks are identified and placed in SSDs. This serves
multi-fold. First, the time to write data and the subsequent future read access
is improved as now the dependent blocks do not have to undergo contentions
at the disk interface. Secondly, the pipelining of replicas somehow constricts the
performance during writes, as the replicas of dependent blocks are placed in
HDDs, but placing one (or more) replica in SSD improves the future read time
significantly.

It is also observed that though Workload 2 is a subset of Workload 1, and
there is more opportunities of optimization via LDM in workload 2, but the
gains derived are much more. We discuss in detail with fine grained analysis of
each job for both the workloads to understand how LDM optimizes and manages
data-dependency which leads to savings in I/O time.
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(a) Total Time (b) Application Run Time

(c) Job Completion Time - Anatomy (d) Total Read and Write Time

(e) HDFS blocks (f) Domino Effect of LDM

Fig. 6: Performance Evaluation of LDM: (a) Total Time taken by HDFS and
LDM; (b) Time taken by Chained Applications; (c) Anatomy of Job comple-
tion time of Chained MapReduce Applications; (d) Total Read and Write Time
of TeraSort job to show the difference between LDM for lineage applications
LDMw1 and LDMw2; (e) Dependent and Non-Dependent blocks; (f) Impact of
LDM on other concurrent applications running at the same time.

Time taken by chained applications

Figure 6b represents the time taken (y-axis) for completing (TeraGen TG

+ TeraSort TS + TeraValidate TV ) and (TeraSort TS + TeraValidate TV ) by
Hadoop (HDFS), and LDM optimizations during workloads 1 and 2, i.e. LDMw1

and LDMw2, respectively. It is observed that LDM outperforms HDFS by 55%.
The graphs for LDMw1 is same, as the data already resides in HDD for con-
sumption for TeraSort, i.e. TeraGen does not exists. Moreover, we also observe
that the time taken to complete (TeraSort TS + TeraValidate TV ) for LDMw1

is lower than LDMw2 by 40%, though in both cases, we calculate the times from
the start of TeraSort and to the finish of TeraValidate.

In-order to understand the difference between performance for applications
LDMw1 and LDMw2 from the beginning of TeraSort TS and end of TeraValidate
TV using LDM, we plot the individual job completion times of TeraGen, TeraSort
and TeraValidate, as shown in Figure 6c.

From Figure 6c, we observe the following: 1) The time taken by LDM is sig-
nificantly lower than for all jobs. 2) TeraGen does not exist for LDMw1, as we
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assume that the data is already residing in HDFS. Hence for the analysis of re-
sults between LDM optimizations for lineage applications LDMw1 and LDMw2,
we do not consider the time taken to complete TeraGen. 3) Time taken by Ter-
aValidate for both LDMw1 and LDMw2 is same, suggesting that most of the
difference occurs during TeraSort phase. Therefore, we further investigate the
TeraSort job.

Figure 6d shows the total time taken to read or write, right from the first
block of read to the last block (similarly for writes) belonging to TeraSort job,
i.e. (Ts(reads)) and (Ts(writes)) respectively.

For reads, there is marginal gain between HDFS and LDMw1, while there is
significant improvements for LDMw2. This is attributed to the characteristic of
the job, as most of the reads occur in the Map phase, for LDMw1, as the data
is fetched from HDDs which is nearly same as with no optimization, i.e. HDFS.
While for LDMw2, the TeraGen phase is optimized and LDM places (writes)
dependent blocks in SSDs, therefore, leading to large reduction in time for reads
during TeraSort. We classify the data chunks (128 MB) into dependent and non-
dependent, i.e. those HDFS blocks decided by LDM to be placed in SSD and
HDD, respectively.

Figure 6e shows the number of HDFS chunks (y-axis) versus the dependent
or non-dependent blocks decided by LDM to be placed during that phase. The
dependent blocks are written during that phase and consumed in the next. While
non-dependent are those data chunks which are those blocks which are not re-
quired for computation in near future. We observe that for TeraGen, all blocks
are classified non-dependent for LDMw1, as those data sets are already resid-
ing in HDD, while none are dependent. For LDMw2 application, the dependent
blocks are placed in SSD, which are used during the TeraSort run. This justifies
the higher read performance for LDMw2 than LDMw1 for the same LDM opti-
mization observed at the same start and end point (in terms of job completion).

During the writes of TeraSort (refer to Figure 6d), in both scenarios the time
is reduced significantly. It would be expected that the write time for LDMw1

and LDMw2 should be same, as the difference is only for the reads from SSD
(in case of LDMw2) and writes should be the same but LDMw2 performs 17%
better. This is because of the nature of the dataflow framework (MapReduce),
which does a lot of inter-mediate local writes, which in the case of LDMw2 is in
SSD, which is faster.

Therefore, we observe that LDM is able to manage the data-dependency
while reducing the time taken by over-all workload and chained applications.
We further study the impact of LDM on other concurrent non-lineage data cen-
ter applications.

Impact of LDM on other concurrent applications

Figure 6f represents the time taken by different concurrent non-lineage appli-
cations by Hadoop (HDFS) and LDM. It clearly shows that by employing LDM,
the I/O time for other concurrent applications also reduces. It forms a Domino
effect, in which optimizing on type of application also effects the performance
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of others. This is so because some of the blocks (dependent) which belong to
Chained applications are offloaded from the HDD request queue and placed in
a different media (SSD). Therefore, there are fewer interferences and the multi-
plexing of I/O effect is reduced, which leads to over-all savings in execution time
for non-lineage concurrent applications.

LDM is designed and developed to mitigate the impact of delays associated to
dependency of data in lineage class of applications. Through trace-driven based
experiments, LDM shows to successfully orchestrate the application needs apriori
and match storage capabilities to deliver performance. There is also evidence that
by deploying LDM, the execution time of other applications also reduces. We
conclude in the next section with discussions on future work.

5 Conclusion and Future Work

LDM provides a uniform execution environment across storage and compute,
which addresses specific needs of applications with data-dependency (or lin-
eage). LDM is a lineage-aware data management system which has an oracle-
like deterministic capability to know the future usage of data based on knowl-
edge already present in the data processing framework and ecosystem. These
informations and statistics are being produced and consumed by different com-
ponents of the system. LDM amalgamates these informations from the entire
data center ecosystem to dictate tier-aware storage policies for lineage class of
applications to mitigate the impact of data dependency for lineage class of ap-
plications. Through the development of block graphs, LDM is able to capture
the complete time-based data-task associations and use it to perform life-cycle
management through tiering of data blocks belonging to applications exhibiting
lineage. With trace-driven experiments, LDM is able to achieve 29% to 52% re-
duction in over-all data center workload execution time. Moreover, by deploying
LDM with extensive pre-processing creates efficient data consumption pipelines,
which also reduces write and read delays significantly.

In future, we plan to develop and design data migration capabilities in LDM
as well implement it for PCIe based NVMe SSDs to leverage parallelism pro-
vided by them. We also plan to implement LDM for hybrid set-ups comprising
of DAS, NAS and SAN setups with a wide variety of HDDs, and SCMs (with
different combinations) and study the data movement impact across networks.
LDM opens an avenue for a large diaspora of application and data processing
frameworks and we have implemented it for MapReduce environments. It would
be interesting to extend LDMs capability to understand various other frame-
works like Spark, Parquet, etc. and work together in a unified environment to
cater to different syntax and semantics of applications. Broader impact of LDM
is that it would aid Data Centers to effectively utilize multiple tiers of storage
while keeping the Total Cost of Ownership (TCO) low as well as ensuring lower
memory and resource footprint leading to energy savings.
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